Quantitative radiology: automated measurement of polyp volume in computed tomography colonography using Hessian matrix-based shape extraction and volume growing.
نویسندگان
چکیده
BACKGROUND Current measurement of the single longest dimension of a polyp is subjective and has variations among radiologists. Our purpose was to develop a computerized measurement of polyp volume in computed tomography colonography (CTC). METHODS We developed a 3D automated scheme for measuring polyp volume at CTC. Our scheme consisted of segmentation of colon wall to confine polyp segmentation to the colon wall, extraction of a highly polyp-like seed region based on the Hessian matrix, a 3D volume growing technique under the minimum surface expansion criterion for segmentation of polyps, and sub-voxel refinement and surface smoothing for obtaining a smooth polyp surface. Our database consisted of 30 polyp views (15 polyps) in CTC scans from 13 patients. Each patient was scanned in the supine and prone positions. Polyp sizes measured in optical colonoscopy (OC) ranged from 6-18 mm with a mean of 10 mm. A radiologist outlined polyps in each slice and calculated volumes by summation of volumes in each slice. The measurement study was repeated 3 times at least 1 week apart for minimizing a memory effect bias. We used the mean volume of the three studies as "gold standard". RESULTS Our measurement scheme yielded a mean polyp volume of 0.38 cc (range, 0.15-1.24 cc), whereas a mean "gold standard" manual volume was 0.40 cc (range, 0.15-1.08 cc). The "gold-standard" manual and computer volumetric reached excellent agreement (intra-class correlation coefficient =0.80), with no statistically significant difference [P (F≤f) =0.42]. CONCLUSIONS We developed an automated scheme for measuring polyp volume at CTC based on Hessian matrix-based shape extraction and volume growing. Polyp volumes obtained by our automated scheme agreed excellently with "gold standard" manual volumes. Our fully automated scheme can efficiently provide accurate polyp volumes for radiologists; thus, it would help radiologists improve the accuracy and efficiency of polyp volume measurements in CTC.
منابع مشابه
Pharyngeal Airway: An Analysis Using 2D vs. 3D Images in Different Malocclusions
Introdouction: The aim of this study was to compare information regarding pharyngeal airway sizes in adolescent subjects with different malocclusion classes obtained from lateral cephalograms and 3–dimensional (3D) cone-beam computed tomography (CBCT) scans. Materials and methods: In this prospective cross-sectional study, CBCT scans and lateral cephalograms of 35 subjects, taken with...
متن کاملAutomatic polyp detection and measurement with computed tomographic colonography: A phantom study
PURPOSE The purpose of this study is to assess the performance of computer-aided detection (CAD) software in detecting and measuring polyps for CT Colonography, based on an in vitro phantom study. MATERIAL AND METHODS A colon phantom was constructed with a PVC pipe of 3.8 cm diameter. Nine simulated polyps of various sizes (3.2mm-25.4mm) were affixed inside the phantom that was placed in a wa...
متن کاملEvaluation of the Efficacy of Standardized Uptake Value (SUV)-shape Scheme for Thyroid Volume Determination in Graves’ Disease: A Comparison with Ultrasonography
Objective(s): In this study, we aimed to evaluate the efficacy of thyroid volume measurement using 99mTc pertechnetate single-photon emission computed tomography (SPECT) images, acquired by the standardized uptake value (SUV)-shape scheme designed by our expert team.Methods: A total of 18 consecutive patients with Graves’ disease (GD) were subjected to both ultrasonographic and 99mTc pertechnet...
متن کاملComputer-aided diagnosis scheme for detection of polyps at CT colonography.
Colon cancer is one of the leading causes of cancer deaths in the United States. However, most colon cancers can be prevented if precursor colonic polyps are detected and removed. An advanced computer-aided diagnosis (CAD) scheme was developed for the automated detection of polyps at computed tomographic (CT) colonography. A region encompassing the colonic wall is extracted from an isotropic vo...
متن کاملMachine Learning for Automated Polyp Detection in Computed Tomography Colonography
This chapter presents a comprehensive scheme for automated detection of colorectal polyps in computed tomography colonography (CTC) with particular emphasis on robust learning algorithms that differentiate polyps from non-polyp shapes. The authors’ automated CTC scheme introduces two orientation independent features which encode the shape characteristics that aid in classification of polyps and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantitative imaging in medicine and surgery
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2015